7,562 research outputs found

    The observable effects of tidally induced warps in protostellar discs

    Full text link
    We consider the response of a protostellar disc to a tidally induced warp and the resultant changes in the spectral energy distribution (SED). We argue that for typical protostellar disc parameters the warp is communicated through the disc in a wave-like fashion. We find that the main effects of the warp tend to be at large radii (greater than 30 AU) and, for sufficiently small viscosity, can be quite long-lived. This can result in non-uniform illumination of the disc at these radii and can induce significant changes to the SED at wavelengths greater than 100 microns.Comment: 7 pages, 9 figures. Accepted by MNRA

    Rigidity of Frameworks Supported on Surfaces

    Get PDF
    A theorem of Laman gives a combinatorial characterisation of the graphs that admit a realisation as a minimally rigid generic bar-joint framework in \bR^2. A more general theory is developed for frameworks in \bR^3 whose vertices are constrained to move on a two-dimensional smooth submanifold \M. Furthermore, when \M is a union of concentric spheres, or a union of parallel planes or a union of concentric cylinders, necessary and sufficient combinatorial conditions are obtained for the minimal rigidity of generic frameworks.Comment: Final version, 28 pages, with new figure

    Improving Livability Using Green and Active Modes: A Traffic Stress Level Analysis of Transit, Bicycle, and Pedestrian Access and Mobility

    Get PDF
    Understanding the relative attractiveness of alternatives to driving is vitally important toward lowering driving rates and, by extension, vehicle miles traveled (VMT), traffic congestion, greenhouse gas (GHG) emissions, etc. The relative effectiveness of automobile alternatives (i.e., buses, bicycling, and walking) depends on how well streets are designed to work for these respective modes in terms of safety, comfort and cost, which can sometimes pit their relative effectiveness against each other. In this report, the level of traffic stress (LTS) criteria previously developed by two of the authors was used to determine how the streets functioned for these auto alternative modes. The quality and extent of the transit service area was measured using a total travel time metric over the LTS network. The model developed in this study was applied to two transit routes in Oakland, California, and Denver, Colorado

    A preliminary investigation of finite-element modeling for composite rotor blades

    Get PDF
    The results from an initial phase of an in-house study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of elastic couplings are presented. Large degree of freedom shell finite element models of an extension twist coupled composite tube were developed and analyzed using MSC/NASTRAN. An analysis employing a simplified beam finite element representation of the specimen with the equivalent engineering stiffness was additionally performed. Results from the shell finite element normal modes and frequency analysis were compared to those obtained experimentally, showing an agreement within 13 percent. There was appreciable degradation in the frequency prediction for the torsional mode, which is elastically coupled. This was due to the absence of off-diagonal coupling terms in the formulation of the equivalent engineering stiffness. Parametric studies of frequency variation due to small changes in ply orientation angle and ply thickness were also performed. Results showed linear frequency variations less than 2 percent per 1 degree variation in the ply orientation angle, and 1 percent per 0.0001 inch variation in the ply thickness

    Low-Stress Bicycling and Network Connectivity

    Get PDF
    For a bicycling network to attract the widest possible segment of the population, its most fundamental attribute should be low-stress connectivity, that is, providing routes between people’s origins and destinations that do not require cyclists to use links that exceed their tolerance for traffic stress, and that do not involve an undue level of detour. The objective of this study is to develop measures of low-stress connectivity that can be used to evaluate and guide bicycle network planning. We propose a set of criteria by which road segments can be classified into four levels of traffic stress (LTS). LTS 1 is suitable for children; LTS 2, based on Dutch bikeway design criteria, represents the traffic stress that most adults will tolerate; LTS 3 and 4 represent greater levels of stress. As a case study, every street in San Jose, California, was classified by LTS. Maps in which only bicycle-friendly links are displayed reveal a city divided into islands within which low-stress bicycling is possible, but separated from one another by barriers that can be crossed only by using high-stress links. Two points in the network are said to be connected at a given level of traffic stress if the subnetwork of links that do not exceed the specified level of stress connects them with a path whose length does not exceed a detour criterion (25% longer than the most direct path). For the network as a whole, we demonstrate two measures of connectivity that can be applied for a given level of traffic stress. One is “percent trips connected,” defined as the fraction of trips in the regional trip table that can be made without exceeding a specified level of stress and without excessive detour. This study used the home-to-work trip table, though in principle any trip table, including all trips, could be used. The second is “percent nodes connected,” a cruder measure that does not require a regional trip table, but measures the fraction of nodes in the street network (mostly street intersections) that are connected to each other. Because traffic analysis zones (TAZs) are too coarse a geographic unit for evaluating connectivity by bicycle, we also demonstrate a method of disaggregating the trip table from the TAZ level to census blocks. For any given TAZ, origins in the home-to-work trip table are allocated in proportion to population, while destinations are allocated based on land-use data. In the base case, the fraction of work trips up to six miles long that are connected at LTS 2 is 4.7%, providing a plausible explanation for the city’s low bicycling share. We show that this figure would almost triple if a proposed slate of improvements, totaling 32 miles in length but with strategically placed segments that provide low-stress connectivity across barriers, were implemented

    On trust and privacy in context-aware systems

    Get PDF
    Recent advances in networking, handheld computing and sensors technologies have led to the emergence of context-aware systems. The vast amounts of personal information collected by such systems has led to growing concerns about the privacy of their users. Users concerned about their private information are likely to refuse participation in such systems. Therefore, it is quite clear that for any context-aware system to be acceptable by the users, mechanisms for controlling access to personal information are a necessity. According to Alan Westin "privacy is the claim of individuals, groups, or institutions to determine for themselves when, how and to what extent information is communicated to others"1. Within this context we can classify users as either information owners or information receivers. It is also acknowledged that information owners are willing to disclose personal information if this disclosure is potentially beneficial. So, the acceptance of any context-aware system depends on the provision of mechanisms for fine-grained control of the disclosure of personal information incorporating an explicit notion of benefit

    Privacy, security, and trust issues in smart environments

    Get PDF
    Recent advances in networking, handheld computing and sensor technologies have driven forward research towards the realisation of Mark Weiser's dream of calm and ubiquitous computing (variously called pervasive computing, ambient computing, active spaces, the disappearing computer or context-aware computing). In turn, this has led to the emergence of smart environments as one significant facet of research in this domain. A smart environment, or space, is a region of the real world that is extensively equipped with sensors, actuators and computing components [1]. In effect the smart space becomes a part of a larger information system: with all actions within the space potentially affecting the underlying computer applications, which may themselves affect the space through the actuators. Such smart environments have tremendous potential within many application areas to improve the utility of a space. Consider the potential offered by a smart environment that prolongs the time an elderly or infirm person can live an independent life or the potential offered by a smart environment that supports vicarious learning

    A compact rotary vane attenuator

    Get PDF
    Rotary vane attenuator, when used as a front end attenuator, introduces an insertion loss that is proportional to the angle of rotation. New technique allows the construction of a shortened compact unit suitable for most installations

    Dynamic trust models for ubiquitous computing environments

    Get PDF
    A significant characteristic of ubiquitous computing is the need for interactions of highly mobile entities to be secure: secure both for the entity and the environment in which the entity operates. Moreover, ubiquitous computing is also characterised by partial views over the state of the global environment, implying that we cannot guarantee that an environment can always verify the properties of the mobile entity that it has just received. Secure in this context encompasses both the need for cryptographic security and the need for trust, on the part of both parties, that the interaction is functioning as expected. In this paper we make a broad assumption that trust and cryptographic security can be considered as orthogonal concerns (i.e. an entity might encrypt a deliberately incorrect answer to a legitimate request). We assume the existence of reliable encryption techniques and focus on the characteristics of a model that supports the management of the trust relationships between two entities during an interaction in a ubiquitous environment
    • …
    corecore